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ABSTRACT

This research effort investigates system requirements, configu-

rations, and associated performance characteristics of maximum-

likelihood space-diversity receiving systems. From the maximum

likelihood principle, and the multidimeasional Karhunen-Loeve expan-

sion, the continuous decision equations for space-time detection of

noisy, random multipath signals are developed. Interpretation of

these equations yields the optimum space-time receiving system con-

figuration requ-ren-ients.

The performance characteristics of the resultant systems are then

analyzed lo determine the effects of channel multipath structure

(multipath delay and power division among the paths), space-time

correlation properties of the incident processes, and the specific tem-

poral correlation introduced by the Array geometry. It is shown by a

series of case studies, that for both the single element coupling as well as

array multiple element coupling, that increasing the multipath delay factor

results in decreased system performance capability for fixed power of

the signal and noise processes. Similarly, the performance capacity is

degraded as the available signal power tends to distribute more equally

over the multiple transmission paths. These effects are attributed to the

loss of effective signal energy concentration, resulting in a lower effective

detectability signal-to-noise ratio. An investigation of these effects upon

system performance, due to array geometry (receiving element spacing)

shows that performance is enhanced by increasing the separation distance
i{i
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of the elements for a given multipath situation. This phenomena is

the result of a more compatible array beam pattern that comes about

from increased spacing. In effect, with increased spacing, the main

lobe of the pattern is narrowed, while the side lobes are optimally

suppressed by the optimal cross-coupling of elements. Finally the

analysis illustrates how optimum space-time receiving systems

capability results from a joint consideration of the coupling and tem-

poral processing, ;.ather than aidb~hoturiiiatidn-of :the'proildmaciinto a

spatial (antenna) problem and a (temporal) data processing problem.

As such, the analysis yields a more concise, broader, interpretation

of system design requirements and associated performance character-

istics.
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CHAPTER I

INTRODUCTION

In most modern communications/radar / sonar / seismology

receiving systems, the concept of space diversity, or multi-element

array reception, is of considerable importance. 1 '', 3 In such a system,

the receiver consists of an array of receiving elements, antennas, hydro-

phones, or gcophones distributed in space. These elements couple the

data processor to the electromagnetic or acoustic medium containing the

[desired information processes. It is through these spatially distributed

elements that the spatio-temporal (space-time) wave function processes

are transformed into temporal (time) voltage waveforms. Following the

array elements is the receiver stage, which steers the beam pattern of

the array in the direction of the incident information processes thus

performing "beam steering" and "phasing" of the array. This stage,

in addition to the array geometry, attempts to optimally exploit the

spatial structure of the incident process (analogous to the temporal

processing in the frequency filtering and combining stages of the data

processor). Thus the array and its associated steering stages can be

considered to be a spatial filter as well as a temporal data processor.

Following the spatial filter is the temporal data processor; it

is here that the receiver performs operations (prediction, smoothing,

12



correlation, etc.) on the spatially filtered data to carry out the desired

detection, classification, and estimation functions that yield the

desired informnition (signal, no-signal; target, no-target; range, doppler,

etc.)

Thus the total receiver structure shown in Fig. 1-1 consists of

a spatial filter and a temporal filter. In order to attain "optimum"

reception, one must treat the spatio-temporal processing jointly. Previous

work has partitioned the over-all reception problem into a spatial solution

4,5,6(antenna array design, beam pattern synthesis) and a temporal

solution (classical statistical communication theory, detection theory,

7, 8, 9, 10, 11, 12, 13 Recent studies 14 ' 15, 16, 17, 18
etc. Reen stuie have shown the

utility of working with the entire receiver system as a unit by considering

the combined space-time receiving system operations to obtain optimum

receiving systems with improv, d performance characteristics.
. i 23,2Z4

The temporal data processor can be either an analog system

operating upon continuous waveforms or a discrete system in which the

coupled processes are sampled (A/D conversion) at some stage and pro-

25cessed with a digital filter (digital computer). The analysis that follows

treats the waveform case and develops the expressions for the optimum

continuous decision equations or test statistic computers. Interpretation

of these equations yields the resulting optimum continuous, analog

system configuration. This structure is highly dependent upon the second-

order spatio-temporal properties of the incident processes, the spatial
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filtering introduced by the array geometry, and the temporal filtering

of the-frequency filters, combining sections and beam forming stages.

In this research a model will first be developed for the informa-

tion channel physics to which the receiver will be coupled. From this

model the problem structure is formulated. Then, using the maximum

likelihoo 2, 206,27
likelihood principle I , the coupled process expansion in. orthog-

onal coordinates or sufficient statistics, and the Karhunen-Loeve series

expansion for random processes, the space-time decision equations are

developed. The performance characteristics of the resulting systems

(detectability, and receiver operation characteristics) are then

developed, analyzed, and interpreted. Finally, the performance for an

array receiving system in a random multipath environment is presenced

to illustrate the effects of array geometry, the signal multipath structure,

and the spatio-temporal properties of the incident random processes upon

system performance. From such an analysis one obtains guidelines

which enhance the design and implementation of more optimum detection

estimation, classification and discrimination systems. The analysis and

results are found in terms of process intensity. power, power spectra,

array geometry, etc. Thus, this paper proposes to resolve, in terms

of the parameters of physics (time, energy, and geometry) the problems:

1. For a given space-time structure of signal and inter-

ference processes, what is the optimum system configuration

in terms of geometry and temporal structure?
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2. For such systems, what are the expected optimum and

actual (mis-matched) system performance character-

tics?

I#
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CHAPTER II

SYSTEM ENVIRONMENT AND PROCESS MODEL

The waveform processes incident upon the array of receiving

elements consist of both noise and signal components. The noise

components are due to a combination of all random interfering processes

that exist within.the receiving environment. Typical examples in the

sonar case include sea noise, noises due to fish, noises due to other

ships and submarines. The signal components are due to signals trans-

mitted by the source, as in point-to-point communications, sigUals

reflected by the target, as in active radar, sonar, seismology, or

randon signals p:opagated by the source as in passive radar/sonar or

radio astronomy.

These signals can be either random, deterministic, or either

with random or unknown parameters. 11,13,14 This paper will treat

the purely random signal case in which the incident signal components

are assumed to be sample functions from a zero-mean (no specular

component), gaussian process, produced by a channel or cross section

containing multipath and a scattering mechanism. Such a random,

multipath, information signal is commonly encountered in tropo-scatter

28, 29communication links, telemetry links over randomly fading

30,31 7, 8, 9,10,14channels, and in sonar/radar detection-estimation media.'

The multipath stracture can arise from transmission through layered

6
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media, as in the atmosphere in radar, or underground earth-rock

layers as in seismology, in which parts of the signal are reflected and

29take different paths to the receiver array. The random fading can

Ioccur in channels in which the transmission media is moving or varying

in density, such as transmission of acoustic signals thr'ough the sea,

28
etc. Thus the received signal waveform can be classified as a random

signal or a randomly faded, deterministic signal that has a scattering,
multipath structure due to the channel media.21 2, 24 As such, this

paper deals with the space-time (array) detection of a random, zero-

mean, multipath signal in additive gaussian noise. The signal will be

taken as purely random as is often encountered in passive radar, sonar,

and radio astronomy.

2-1. Multipath Structure

The multipath structure will be assumed resolvable and charac-

terized by delay A.7, 8, 30, 31 This delay is due to the difference in

transmission path length between source and receiver; it is assumed

that the signals of each path arrive from the same direction with devia-

tions from the angle of arrival small. The signal can be expressed as

z(t) Zch(t mA) (2.1)
m=0

where p is the number of paths and A is the characteristic delay.
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Z-2. Channel Process Model

The channel noise process is assumed taken as a zero-mean,

gaussian process that additively masks the random signal waveform.

The total incident process is

r. (t) = Z (t) + n. (t) (2.2)
in ch' cH

The random processes described above are incident upon an

array of K elements distributed in space. The geometry is shown in

Fig. 2-1. The location of each element relative to a known co-ordinate

system is described by its respective position vector p. The ith element

is located in space at a point described by the vector pi.

T

P = Pxi Pyi Pki] (2.3)

The incident wave inteiacts with the receiver elements to produce at the

output terminals of each element a received process r(t). The output

of the ith element is r.(t). For a K element array, the set of output

processes are written as the vector process

r (t) r r(t) r (t) ... rk(t) T(2.4)

It is assumed that the process r (t ) results from passage of the channel

process through the receiver element with linear impulse response

h (t, u), allowing for imperfect receiving elements. The received process1 ir

is thus
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t

rI (t -a (t, U) r 1 (u) du (2.5)

to

Each received waveform consists of a signal process plus a

noise process. In addition there may be noise due to the receiver element

or receiver "front end," which can be included as an additional post

additive, coupling system noise process n(t). Thus, the total received

process at the output of the ith element is

t
T i(t) = e (tu) rch'U) du+nri(t)

t 0

z. i(t) + ni(t) (2.6)

where z.(t) is the received signal component and the two noise processes

can be added to produce the single noise interference n.(t). The set ofii
received processes given in (2. 4) is now

r(t)= z (t) + n(t) (2.7)

For the signal and noise independent, zero-mean, gaussian

4; processes, the covariance function matrix of r(t) is defined as

A T4- K (t, u) = E[r(t) r (u)] (Z. 8)4r ,

with

K (t, u) K (tu) + Kn(t, u) (2.9)
r zn

where

I;"

-.--.-
t-



11

K (t, u) = Ez(t) zT(u)] (2.10)

and
K (t, u) E n(t) n_(u)

N
0

6(t-u) I + K (t, u) (2.11)

The elements of the process covariance matrices can be termed

self-correlation functions for elements on the diagonal of the covariance

matrix and the off diagonal terms are a measure of the correlation in the

processes between elements. Thus the correlation functions Krij(t, u)

can be denoted "self-link" correlation functions if i j and "cross link"

functions if i j. The cross-link correlation functions are directly

related to the spatial filtering produced by the array geometry in terms

of the spatial correlation structure of r(t). This dependence results

from the functions being dependent on the temporal variables and spatial

variables (spatio-temporal correlation properties) of the incidenf process

and upon the spatial variables of the array geometry.

The dependence upon array geometry can be seen by examining

the received signal waveform vector r(t). Since the signal is assumed

to be a plane wave with incidence angle unit vector PS, the wavefront

6,8is time delayed due to spatial distribution of the receiver elements.

The received process in the ith element, located by the position vector

Pi is delayed by the amount Ti. The received signal vector is written



iJ
Zl(t) Z (t T )

L A

z(t) z2 lt) = z .t - ) (2.12)

z k(t)l z (t -WTO

where T. is given by the known wave front delay equation4 ' 5, 6I

Ps P
ST (2.13)
v

with v the medium propagation velocity.

Using (2. 12) and (2. 10) gives

K(t, u) = ii(tT i, L- T.

for all i, j g K (2.14)

The same analysis is valid for the noise correlation matrix. Thus

the covariance matrices are functions of temporal and spatial variables

and as such are proportional to the original spatio-temporal correlation

functions. The general structure of such functions in terms of medium

18,32
and aperture geometry have recently been investigated by Middleton,.

The effects of the wave front delay of the signal components is

counteracted by "steering" the array beam pattern. The array steering

process is accomplished by passin each received process through an

appropriate delay given by the negative of the wave front delay. Thus, the

ith process, after steering, becomes, the prime denoting the steered

process
H -
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zt)

rs(t) = tng c(u) (u-t- du r .t

t
0

i:Z ( it-T -+T.) + n (t T} (2. 15)

[

[Z (.= zt) + n.(t+T.) Z ( it) n (t .z

Similarly the jth steered process is

r:'(t)j z (jt) + njlt+T.) =zlt) -,n!(t) (2.16)

The steering vector process is

n'(t) = i fnHs(t, 1 ) (u) du

t
0

where the steering matrix H (t, u) is a inear system with matrixs

impulse response

H s(t, U) A=[6(u-t-T ) 6..]

The steered signal vector becomes, for homogeneous signal process

Z lt) = Zt) 1 (Z. 17)

and

i ~n'(t-) = [nl(t+Tl n (t+T2)' nk k)

The steering section of the receiver aligns the signal components

of the received process and introduces a time shift in the received

noise processes.
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If both the signal and noise processes are stationary, the power

spectrum of each can be found from the Fourier transform of the

correlation function matrices. , 13 Thus the ij element in the steered

noise spectrum matrix is

S,(W) = (T) eJ d

-WT (.8Kn (+-T.i-T) e dr (2.18)

(w)eJW(T.-Ti)

where Snij(w) is the ij element in the unsteered noise spectrm. -atrix.

This term contains the variables Ti,,T. that are functions of the incident.

wave structure and the array geometry as given by equation (2. 13). Thus

the correlation function matrix, and its related power spectrum matrix,

are proportional to the original spatio-temporal correlation functions

and power spectral functions (bi-frequency and co-intensity).

The over-all effect of the steering stages is that of aligning

the signal components, and simultanecusly introducing new temporal

correlation properties to the noise correlation matrix. The receiver

structures will reflect these new properties and show the effects of

altering the noise field space-time properties.

ii

= ..... .. . . .... .. .
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2-3. Hypothesis St±ucture

The hypothesis structure to be considered is the binary signal;

no-signal case. Under hypothesis H1 the received process is the sum

of signal and noise components

r(t) = z(t) + n(t)

under H the received process is due to noise alone, thus

r(t) = n(t)

The correlation function matrix of r(t) under H is denoted
0

K (t, u) K (t, u) (2.19)
0 n

and under H!, the correlation matrix is

Kl(t,u) = K (t, u) + K (t, u) (2.20)1z n

The above model and hypothesis structure define the physical channel

that is to be studied. The channel model is general enough to reflect

the physical properties of a wide rdnge of important information

1, 18, 19Thanlssothdecin
channels of technological interest. The analysis of the detection

problem receiver structurt s and system performance characteristics

will reflect the model and hypothesis structure developed above. As

sach, the purpose of the research effort defined at the close of Chapter I

will be realized as the optimum array (space-time) diversity detection
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'of noisy random, zero-mean, multipath, gaussian signals. The follow-

ing chapter will derive the optimum decision equation for the channel

model abo-e.

I

1 "2
I

:1



CHAPTER III

OPTIMUM DECISION EQUATIONS AND
SYSTEM CONFIGURATION

The following chapter, using the previous channel model, estab-

lishes the optimum continuous likelihood ratio test (LRT)7decision

equation for the array/diversity detection of random signals. After this

relationship is established, the first and second moments (mean and

variance) of the test statistic are found for stationary and non-stationary

random processes. Interpretation of the LRT/decision equation yields

the optimal array receiver structure. Several structures will be

investigated.

3-1. Derivation of Decision Equations

Using the maximum likelihood principle27 11-14 the expansion

in independent coordinates of the likelihood ratio function defined as

is initiated.

A(r(t) - p(r(t) H) < H

____t < 1  (3. 1)
0 0

For analysis purposes, let each of the above densities be the ratio of

two densities, one of the density under H due non-white noise, and

the other the density for r(t) white noise alone. Thus (3. 1) becomes

17
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: 4 p(r(t) I H1) p(2(_1 ] white)
" A(r~t))5 - p(r(t) Iwhite) p(r(t) I H) (3.

0

The above densities are written in terms of independent co-ordinates by

expanding the random process r(t) in the vector Karhunen-Loeve expan-
33

sion. Thus (3. 2) becomes

* 0where the independent co-ordinates under H are given by

T1

r. = z.+ n. = T t) (t) dt

-, T i

Under H
0T

r. = n. rT(t) yilt) dt (3.4)

T
and

.ki c(t) Kr (t, u) 4(u) du

T.

k where X. are the process eigenvalues and *i(t) are a set of orthonormal

basis functions. 3 ' 1]-14 The numerator term in independent co-ordinates

becomes

1 O i 1 r.r 0  2

p~rJH) T i- exp(i ) )i (3.5)

.: ;"2w i=l exp 2~i k .~i

!i



19

The denominator is

r 2

p(r H) (i ex (4()
' -ac 0 (3.6)e2

p(rJ ) Tr I exp(Z -- .w i=l 2. ~ iw

where
N Nkz N 0 c i No'I -;T  X = X +-TI X T X +

No 0 c 0o NO
aTo -  + Xi = ( + 3.7)

N
0 1Twi  2

an .z n are the eigenvalues of the signal and noise processes
i 1

respectively. Truncating the infinite product at n and taking natural

logarithms give s

n TWi  n r. r.L LnA(r (3.8)

n n i  CTI ,.-YIZ O

n n r. r.

I

LL

-CF 2OT2 z:2 -

Using the vector Karhunen-Loeve expansion given in (3. 4), and the

eigenvalues defined in (3. 7), the first.bracket term (L1 ) in (3. 8) is
n

I-
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iT
n Tf n (u)

Lln= Ln 1 -(t )  r(u) dudt
in nQN

i1 i T. + X.
0 2. 1

Tf h V(t) r(u)

1 r - r(lu) dudt (3.9)
2 ~, N

The second term L is found in a similar manner to be
an

N T
o2 o ;~(t) 1i (u)n nf X.t t  n

L2 jLn( ) r(u) dt du

n l T. +2a

Tf nyd.( )

+N I- r(u) dt du (3.10)

Tt)Ti l
2

Using (3.9) and (3. 10), taking the limit of (3. 8) as n, the number of co-

ordinates approaches infinity, combining terms, and putting constant

terms on the right side of the equation gives

Tf
L =nLim Ln = .. S T(t)[M1 (tu') - - 6(t-u)I]r(u) dtdu

2 No
T.

If

+ rT(t) [M (t,u) - 6 (t > (u) dt du (3.11)

T.I!

I



Swhere '-l L ' (1 X) -

= Ln (1+W- . ) is the new threshold
i=l 0 i=l 0

and M, (t, u) and M (t, u) are solutions to thg integral equations

SK1 (t, u) M1(u, z)I du = 6(t-z) i

T.

Tf
K t,u)M (u,z)du = 6(t-z)l (3.12)

T.
I

and defined A #.(t) -

-- i=] o 1_+ x.
2 (u)

T

COit) i(u)

M t, U) hdf3,

0 1

Following the method of Price for the single sensor case, by

defining

M (t, u) = -- (t-u) I- W (t, u) (3.14

o 0

it can be shown that the matrix filters Wl(t, u), W(t, u) are solutions

of the following matrix integral equations



N 
((t,3z)

W - 1 t,Z) + S C K(t, u1) W (u, z) dui KC(.Z

i

where

Kcl(t,z) = Kz(t,z) + Kc (t,z)

and
Ko (t, z) = K (t, z) (3.16

- c

These equations are Fredholm Integral Equations of the second

kind, and can be solved by the methods given in 34 and 35. Following

tj this procedure, -the optimum decision equation in terms of the matrix

*filters W(t, u) and W (t, u) is
1 0

Tf Tf

L= '- W1 (t, u) r1(u) dt du - -- W(t u) r(u)dtduN 1N 3
0 -- 0T. T.

1.i 1 (3.17)

This equation can be rewritten in terms of a single matrix

filter MA(t, u) as

,: : Tf
L t) M(t, u) r(u) dtdu <N (3.18)

T.

where the integral equation for M(t, u) is

iJ
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Tf

iii (t, z) M,,,z, w) K (w, u1) dw dz KC (t, U1)(.9

T.

Equation (3. 10) is the optimum "coupled space-time" decision

equation for detection of random signals in noise. Interpretation of

equation (3.10) yields the optimum system configuration, the following

section will show several interpretations. The decision equation is

written in terms of the correlation properties of the incident processes

and the filtering (space-time) properties of the array; the system

requirement will reflect this same dependence.

3. 2. System Configuration

The previous section developed the optimum decision eqaation

(3.18) based upon the maximum likelihood principle for binary hypotheses.

In the development the matrix MA(t, u) was referred to as a filter.

Interpretation of equation (3. 18) yields the optimum system configurations,

with one such system employing the MA(t, u) filter to be discussed first.

Equation (3.18) can be rewritten as

Tf T~f

L = rT(t) S M,(t, u) r(u) dudt (3.20)

T. T.

In this form the received data vector r(t) is passed through a lattice

filter bank (convolution) and is then correlated with the unfiltered data

producing the rest statistic L. The matrix filter is a K-lattice bank
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(for K receiving elements) of filters. The system configuration is shown

inFigure3-1. If the incident processes are non-stationary, the filters

37required are time varying and can be realized in the Kalman form;

stationary processes at the input would require linear time invariant

filters.

Another system configuration for the optimum receiver can be

found by dividing M (t, u) into two filters defined by

Tf
M (tu) Hw(t, z) Qn(z, u)dz (3.21)

~T.

where T
f
SK (t, z) Qn(z, u) dz = 6(t-u) I (3.22)

T.
a 1

Substitution of (2. 31) into the integral equation and using

equation (3. 22) for the inverse noise kernel matrix 0 (z, u) yields the
E

integral equation for H (t, z).
w

T
f

K(,u) = [K (tx) + K (t X)] H (x, u) du (3.23)

IT. i
This equation is the KXK matrix Wiener-Hopf equation,35 14 and the

matrix filter H (t, u) is the minimum-means-square-estimation filter

for the K-vector processes z(t)

(t)mmse H (t, u) r(u) du (3.24)

T.

!.:

II -i----.---,-,-



Equation (3.18) can thus be rewritten using (3. 21) as

1

= z'lt) x(t) dt (3.25S)

T.
1

Defining Tf
x t)= t H (t, u)xr) du (3.2 6

n n

T.
1

The test statistic computer is such that the best estimate of the random

signal is correlated with the "whitened" data r(t). The system configura-

tion is shown in figure 3-2Z and consists of two; lattice banks of filters. In

the upper branch the received data vector is passed through the whitening !

filter Qn(t, u) and correlated with the "Weiner" or Kalan (minimum-"

means-square-error) estimate of the random signal waveform z.(t).

Thus the receiver structure is a K-lattice bank "estimator-correlator"

M7, 8, 9 d

receiver.

3-3. Stat'onar y Processes

For the stationary process case, the above systems can be

manipulated to show further dependence of the system structure upon

the space-time properties of the incident random processes, of the array

structure, and of the steering.

the pac-tie poperiesof he ncidnt andm pocesesof he rra



- 26

LH

c C~

N cl

* -*

. * -

IL
it - -



27

The random processes are said to be stationary if the observa-

tion time T = T - T. is greater than the reciprocal bandwidth of the
f 1

26
rardom processes. If such is the case, Fourier transformation of

equation (3.19) yields the matrix frequency filter SQ(u) in terms of the

process power spectra as

S. (W) = Sl(W) SQ(W) Sn(W)

and

SQ(W) =, S1 (W) S (w) Sn (W) (3.27)

where Sl(), Sz(w), S (w) were defined previously.
14, 34, 35

Employing the integrated transform in equation (3. 18),

and using Parseval's theorem gives the test statistic L in frequency

form.

~ T* dw
T& S R s (W) d (3.28)

Substitution of equation (3. 27) into (3. 28) gives

L Rw) S (W) s Sl (W) S(w) R(w) (3.29)

The general stationary rbeeiver gtructuri is given by e~uation (3..Z9).

K element case. A simplified structure for 2 elements is shown in

figure 3-3.

Paralleling the development of equation ' v2l) through (3. 26)

for the stationary case, gives

Ic
.. . "1 -,
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r J _29

L=CzT*(w) X(W) d

where

-I (w R(w) (3.30)

X(w) = s 1l(w) R(w) (3.31)
n

This system shown in figure 3-4 is the frequency form of the

structure shown in figure 3-2. It will be noted that this implementation

again requires two matrix filters and combiners. Simplification

results when the effects of array steering are exploited and utilized
14

for the single signal case.

It was shown previously that array steering caused the

received waveform vector to undergo phase shifting due to array

steering delays. Thus, after steering, the signal components are

identical and

T
S (w) S (w)l 1 (3.32)

Z z

and

Sn,(W) = [Sn(w)] (3. 33)

Thus, equation (3. 30) becomes

I;' I:
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Z Jw) S S(W) 1] S1 , (Lu) R (w)~Z

KK

Sz(W) S, (w) R!(j) 1 (3.34)

ij

where LS denotes the ijth element in the inverse of SI(w). Equation

(3. 29) becomes, using (3. 33), (3. 34)

O K K K .

(~S~) Si~w ~w T S()Rw)dw

L S S(W) S Sj (w) R!(w) 1 S (w) R (w)
Ln

cc K Kddw

=S Z(w) X.(w) !w S"J()R-j i

Thus the receiver reduces to that shown in figure 3-5, This

structure can be simplified still furcher by showing that the scalar
A K

estimate Z(w) can be produced by passing Xi(w) - Y(w) through a
i=l

linear filter T(w). Mathematically, this is represented by

Z(w) = T(w) Y(w)

Using the vector equations for Z(w) and' X(w)

Z(w)l = T(w) X(w) = F(w) Y(w)L_

or

s 1,(w) R,(w) T(w)l T St(w) R,(w)

1 nt
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S(w) I= T IT- (W) S(

zn

but

Sl (W) = S ,(w) + Sn,(W)

Thus
S zl(w)11 Tlw)l TI + Tlw) I S n, (W) Sz,(W)

After simplification,

S(W) (W S'3 (w) + ]T(w)

Solving for the scalar frequency filter T(w) gives

S (w) S(w)
T(w) = z K1

l+S(w)V! S'3 (w) l+N(w) S (w)

i j

Thus the most easily implemented post-steering receiver structure

passes the steered data through the K~xK matrix bank of frequency

filters S -(w), sums the outputs of the filter bank t- form the scalar

Y(w), then passes Y(w) through the scalar linear system T(w). The

resulting estimate Z(wl) is correlated with Y(w) to form the test sta-

141

tistic L 1 4 This system is shown in figure 3-6 and illustrates the

dependence of the receiver structure on incident process spatio-

temporal correlation properties, array geometry, and array steering.

!I
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The optimum receiver structure can be found in the above manner for

a given incident process structure.

The above sections have developed the optimum decision

equations for the space-time detection of random signals in noise and

have shown the optimum system configurations that result from an

interpretation of these decision rules. The resulting systems were
AS

developed for the non- stationary and stationary steered case and were

shown dependent upon the space time properties of the incident signal

and noise fields, and array filtering characteristic s. The next chapter

irivestigates the performance of these systems.
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CFAPTER IV

SYSTEM PERFORMANCE

Once the optimum receiver structures have been found, the

performance of these systems must be evaluated. A performance

measure for the preceding systems will be established and the nature

of the test statistic L will be investigated.

To determine system performance characteristics, one needs

the probability density of the test statistic L, under each hypothesis.

From this density, false alarm probability, PF' probability of detection,

P and error probabilities, PE' can be defined and computed, thus
I11-14, 26

specifying system performance.

The distribution of L under each hypothesis can be obtained in

two ways. The first is a direct, exact prcbability density calculation;

the second uses a guassian approximation to the true distribution of L.

In the approximation approach the density of L is taken to be gaussian,

with true mean and true variance computed directly from the decision

equation. The validity of this approximation has been considered and

8,36 36
established by Price 8 ' and Green

In both cases, the density of the test statistic under each

hypothesis, and resulting performance probabilities will be shown to

be dependent upon the spatio-temporal correlation properties of the

35



incident random processes, the array geometry and steering, and the

" ifreceiver structure. Analysis of the performance measures will yield

guidelines to enable one to improve the over-all system performance.

In this chapter, the true density will first be established, then

ii the true mean and variance under each hypothesis will be computed.

Using the true first and second moments the gaussian approximation -I

will be made, invoking the Central Limit Theorem; and from the 2
approximate densities the system performance criteria will be developed. I
4-1. True Distribution of the Test Stafisti&

The optimum space-time decision function for the detection I
of random signals was given by equation (3.18) as

L = r(t) M (t u) r(u) dt du (4.1)

T.

Expanding the continuous quadratic form, the decision equation becomes
Tf~

L r r(t) MAi,(t, u) r.(u) dtdu

Ti

K T J

} i T.

K RK
+ r.(t) MA (t, u) rj(u) dt du (4.2)

iij
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Defining T

Z (t) ( M..t, u) r.(u) du (4.3)

T.

K T KK If

L r (t) z(t dt + ' ri(t) z.(t) dt (4.4)

i-iT. ii ri

I

Let the ij integral product of (4. 4) be

' h A rilt ) zj (t) d 45

Ti

Thus K KK

L t L

i 1J

i #j

+ L 2+... ~Lk-lk (4.6)'l '221
+  Z + "'" L12Z

Examining a typical term in (4. 6) shows that each L term is an infinite

[ dimensional inner product. This is shown by taking the general term,

L and expanding it in a series of orthonormal basis functions using

r the Karhunen Loeve expansion.

Tf

L = rm (t) zp(t) dt (4.7)

T .
w

~where 1 a m, p < k and the processes can be written



I r(t) = rml ml(t)

ii +-'where

St (t = p(t) dt (4.8)i 1

T.

Tf
r = ~ M r t) m(t) dt

T.

Dropping the m, p subscripts gives for (4. 7)

Li(t) dt (4.9)

T. i=l j =1

Interchange of summation and integration and using the definition o €

L 11-14
orthonorraal basis functions yields

L r. z. 8.. : Lim 3r. z. Lim L. (4.10)
i j 13 n- 1 1 n n(410

where
n

Lr.z. r z (4.11)

Thus using the n-truncation of (4.11), (4. 6) can be written as a sum

oi inner products

,,n n n

L Lim ( Ln+33Lj)(4.12)

A

IO _+_

i,.q
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In the limit the products are infinite dimensional.

In order to find the density of L, one must find the density of

2
the sum of K inner products. The mathematic is quite ormidable,

:; 40, 41as the products Lnij are non-gaussian and not independent. Thus

27 ', 38, 39
conventional techniques are not applicable. The complete density

of (4.12) is not investigated here but in order to illustrate the nature of

the test statistic, the present section will obtain the exact density of a

gaussian inner product. Such a density is not without utility, since it

represents the test statistic density computed for a single receiving

element system, The density will be evaluated in terms of the eigen-

values and eigenfunctions of the incident processes and the filtering of

the frequency filtering sections. The Karhune i-Loe're expansion will

be used extensively.

Let r(t) given by (4. 8) be such that

T
f

Xr~iKi(t) = Kr(t, u) i(u) du (4.13)

Ti

where Xri is the ith eigenvalue of the process r(t).

The inner product Ln is

T
Ln = rz (4.14)

where r, z are gaussian and zero mean, as in the process model taken

in Chapter II. Since the n-dimensional vectors are expanded using the

K-L expansion, the co-ordinates of each vector are independent, while
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there is correlation between the elements of r and of z. This is

represented

E[rir]- E[zz] = 0 iij
0 i =j

E[rz.] = 0 i j
1 0 i j

Using this property of independent co-ordinates, the joint density-function

of the vectors r, z is given by

n
p(r, z) = :a p t r i , z.) (4.15)

where _Zn A-i/2  -i~~U7A r

p(rz) = (z) A, exp(-lr, 7A i  z) (4.16)

where

rE[r E[rizi]
Eri [ri zi ](.7

A~ELzi][ (4.17)
2E~fr z EEz

and

A. 1 = W. (4.18)

The joint density can be rewritten as

prt T Pp W1 r- . + Zzr i z .. + Wzi z i

For stationary processes A. = A. all i, j

Thus

n n n n
1 n np(r,z) JAI exp (w + ZWlz , 2 2

' ii*1



is the joint density of the r, z vectors. The exponential summations

can be redefined as

n n n

r = = , rz = r z L
i=l i=lil

Thus n
1 2 2W 2_

p(,z) (2T)-nIA 1exp(--!(W.lX + 2 r z + W 2Y 2))

39
Following the procedure of Miller, generalized spherical co-ordinates

for the r, z variables are introduced, and manipulated to give the

marginal frequency function in X, Y, cD for the definition

T
r z = XYcosCP 0 !CDT

giving

2 2
n-2 -l(WiX +W2 2  ) W XY cosp

(XY) (XY sin Cp) e e
F(X, Y, ) = (4.20)

2n-2 (4.210n).

Integrating (4. 20) over the range of the new variables

L = XYcoscp• n

= -XYsincp 0 'g<O

a = X 0 < CO

1
J = , the Jacobian, gives

2 2

'1,

[V



p (L) f(X, Y, cp) J dcx d§ (4. Zl)

00

With K(") the modified Bessel function of the secondkind and
V

order v, the density of L for n co-ordinates in the expansion is
n

n-1 -Wj 2 LILn -J- e
p(Ln) = n-i kn-IL 1n z) (4.22)

I r( n) Z 2 JAI (X 1ll 2 2) z

The matrix A is found from (4.17) and (4.18) in terms of the

space-time correlation properties of the incident processes, array

steering and filtering.

Tf

E[rlrl] = K (t, u) 4i(t) *i(u) dt du

1 rI T.

E[rz = E[z = K(tv) (v'u) i(t)ti(u)dudtdu

I T.
1 1

Tf
EEZ1 ] = K (v, w) MA(t, v) MA(w, u) ,i(t) 4i(u) dvdwdt du (4.23)

Ti

In terms of frequency spectra using integrated transforms

1CO'~F Ir 2 Srl 0 (J i Z--w

d dw

E[rizi] = E[zir.] = S SM(w)MAW)4 i(jW)l --

Y
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2 2 dw
2E S (W) JM (W) Ji(iW) I

where Tf

~jw) A t ) e- dt

Thus the density is dependent upon the space-time structure of

the incident signal and noise processes in the above manner. The density

given in (4. 21) with (4. 23) can be written under each hypothesis by appro-

priate substitution of (2. 19), (2. 20) into the correlation function in

equations (4. 23).

In summary, the continuous density of L under either hypothesis

$is found by obtaining the limit of the density of L as n grows without
n

bound. An approximation can be realized by trancating the infinite series

at n and using n co-ordinates. The density given above is the density of
b2

a single inner product. The true density must be found for the sum of K2

such products. Since each of the inner products is non-gaussian and not

independent, the analytical effort is not very tractable and has not been

7investigated here. The density of the single inner product shows the

nature of the test statistic L. and in a following section the sum of many

such products is allowed to converge to the gaussian distribution, hus

allowing system performance to be expressed analytically. The next

section of this paper obtains the true mean" and variance of the complete

continuous test statistic.
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4-2. Calculation of True Mean and True Variance of L

The true first and true second order moments of L (mean and

variance) under -each hypothesis can be found by direct application of

the expectation operator to the decision equatib. Under H the received

vector r(t) is taken to be

r(t) = z(t) + n(t)

Thus taking tie expected value, the mean of equation (3. 10) under H is

If

Ti

and since the integrand of (4. 24) is a Hermitian quadratic form of the

T 40
form R QR, the form can be rewritten as

T T
RQR =r[QRR)3 (4.25)

where T is the trace operator.r

Thus (4. 24) becomes, after commting the expectation,

T4

TT

SI'
T

= Tr M (t, u) K (t, u) at du (4,26)

T.
L

with

K (t, u ) = K(t, u) + Kn(t, u)
1 n

- - ------- ~-----~------------------ -~
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In a similar manner the expected value of L under H0 is found
T

E[1,114 Tr Mt, u) K (tp u) dt du (4.27)0 M-61 n

The variance of the text statistic is found from the definition

of the variance.

z 2Var[LIH ] E [LIH] E [LIH] (4.28)

Squaring (3.18) to find the mean-square of L under H.
Tf

L' =,t u)r(u T (x x, y) dtdu dxdy (4.29)

IT

and applying property (4.25) and the property that matrix products

40
commute under the trace operator

Tr (ABC) = Tr [any order]

gives

Tf TM 1, r T TIld d
L S M (t,, Urt MAx, y)rtr (u)r(x) r i y) x u

Applying the expectation under H . and the expectation theorem for the

product of gaussian variable33 26 it follows that

E[L2 J1 ) 1, 2Tr 5555 M t )K(,x (ly ,(,t dt dudxd y
T. (4.30)

+ Tr 5555 MA(t, u) K (t, u) MA(x# y) K,(x, y) dt du dx dy

T,



b

The second set of integrals in 14.30) is the E [LIH] which,
i

when taken with (4. 29) gives

Tf

Var[LjH.] 2Tr MA(,u) K u )M~,yK(,t) dtdudx dy
T.T. (4.31)

Thus the true mean and true variance under each hypothesis are

given by equations (4. 27, 31). These equations give, in general, the

first and second moments for both stationary and non-stationary processes.

If [r(t)] is a stationary process, the equations (4. 7, 31) can be written,

14, 34, 35 14using integrated transforms, and Parseval's theorem in terms

of the process power spectra.

L~S1 (c) S(w) Sn' (W) S.(W) dw (4.3Z)E[ 1 i j _ _ _ Z

and
Var[LIH.] = 2Tr fS 1 (w)S(w)Sn(w)S(w)! 2 d (4.33)

z jln Zn

The above equations for the true mean and variance of L under

each hypothesis will be used extensively in the gaussian appriximation

to the true density that follows and in evaluating system performance.

4-3. Gaussian Approximation for the Test Statistic Distribution

The density of the single element test statistic, L unider either

hypothesis was given by equation (4. Z2) As can be seen, this density is

quite complicated and difficult to manipulate analytically to obtain exact

system performance. Such difficulty can be overcome, however, by the

iS
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the use of an approximation to the exact density. One such approximation

is a truncation of the infinite series in (4. Z2) and the use of numerical

techniques to obtain system performance. Another approach is a direct

approximation of the true density by substitution of a gaussian density

for (4. 22). In this approximation L is taken to be a gaussian variable

with- mean given by the true mean of L (computed in (4. 27, 28) and with

variance given by the true variance of L (computed in (4. 31)).

Justification for this approximation can be seen by noting that

the test statistic L was found in IV-Z to be a kth order inner product,
2 27, 40, 41

and as such is the summation of K non-gaussian X variables.

It is known that the density of a summation of non-gaussian ind, variables

converges to the gaussian distribution quite rapidly through the proper-

ties of the Central Limit Theorem.27,38 This convergence is most

8,36 36
rapid in the vicinity of the mean of the density. Price 8 , Green

42and Middleton have investigated the gaussian approximation quite

extensively and have shown its validity in computing system performance.

The gaussian approximation for the test statistic has been inves-

tigated for the "threshold" or coherently undetectable case by

Middleton and Price 3. Their studies have shown that the approxima-

tion yields useful results for cases in which the signal-to-noise ratio

(SNR) is low. If a large average, signal power is available, implying

high SNR, system detection requirements are usually not critical.
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However, for lo, SNR the effects of array and incident process spatio-

temporal correlation properties become important, since it is usually

necessary to attain nearly optimum system configuration and performance,

in order to meet system detection capability specifications. The

gaussian approximation furnishes performance analysis methods for such

cases of low SNR. Thus the approximation is most valid where it is

of greatest utility. Helstrom has examined another approximation to

(4. 22) using the Gram-Charlier series expansion and found comparable

results.

Thus the density in (4. ZZ) can be approximated as gaussian

with mean given by (4. 27, 28) and variance by (4. 31). The following

system performance criteria analysis and subsequent case studies

employ the gaussian approximation of the test statistics.

With the density of L gaussian, the error probabilities of the

system can be defined by

prob. false alarm =PF = p(LIH )dL

=erfc(! .l- + '
0

where y is the threshold, and similarly
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prob. of miss P h p(L HI)dL

n 6(4.35)
ln 0

= erf(l-- -  )
o
06

where erf(x) SI_ exp(i2 ) d x

erfc(x) = 1- erf(x)

, P the probability of detection, is defined as

PD M1-erfc 6 26
0

The parameter 6 is related to the output signal to noise ratio0

by

0  SNk

where

2A(E[LJE-H E[LIHJ)
(SNR) = 6 (4.36)

(Var[LIH1]Var[L/H 60

The validity of this measure of system performance has been

found by Price 8 . The numerator of the 6 parameter is a measure of
0

the distance between the means of the densities under each hypothesis,

while the denominator is a measure of the variance or spread of the

densities, Thus, system performance will be enhanced by increasing

the distance between the means, and degraded by an increasing variance.

11¢



The 62 parameter will be used as measure of system performance

in the remainder of this paper.

Using equation (4. 36) for 6 and equations (4.27), (4.28),~0

(4.31) for the parameters in (4. 36), the performance characteristics

can:be written in general as 14

2f 2
[Tr M (t, u1) K (t, u) dr dli

2
2 T i  A zu

6= 1
0 Tf

T (4. 37)

X [Tr ~ ~t, u)K (u. x)M (x. y)Kjy, t) dtdu dxdy)S,.-S M-A 0
Ti

2
The parameter 6 reflects the dependence of system performance

0

upon spatio-temporal structure of the incident processes, array geometry

and steering, signal-to-noise power ratio, and temporal filtering and

combining techniques. Equation (4. 37) is the general expression for the

receiver performance for both stationary and non-stationary processes.

If the incident processes are stationary as defined previously, new j

insight into the nature of 6 2 is found.

With stationarity and binary hypothesis 6. can be written in

terms of the power spectra of the incident processes, filtering require-

ments and steering delays as

'I
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6-~~j~~wS,()ZdW 2J0 (,..~~ d /2
(T r ',wSwlE r I (w)S,, w) W' (4.38)

The above expression may be used to obtain system performance

curves for detection of stationary random signals. Further simplififica-

tion of (4. 38) can be found for the threshold or "coherently undete~qtable"

8,14,36
case.

4.4 Threshold Performance

The performance index given by (4. 38) for stationary processes

can be further simplified for the "threshold" or "coherently undetectable"

4Zcase. Much of this analysis was first investigated by Middleton and

8,36
Price 6

The assumption that is made in the threshold case is that the

signal-to-noise-ratio is low, or that the magnitude of the elements of

jl the noise spectral matrix are much larger than the corresponding elements

in the signal spectral matrix. Mathematically, this is stated as

Snij (w) >> Sz (w) all i,j

In such a case

SllW) : (lW) + S j(W) S S(W)

and

'0]U i-,
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(w) S (w) Sn (w)

- Ii ) Sw z(w n1w

Using these relations in (4.38) and noting that Var[LLIH o ]  Var[LIH ]

gives )-

6 1 (E[LIHI] - E[LIH0
Var[LIH ]

i0

1-Tr S-)~) 1  dw

for a steered array S (w) = S (w) is given by (3. 32) and S (w) S n(w)

by (3.33). Thus

2 -. T -1 TZ2 dw
6 Tr X S(w)11 S I dS(w) (4.39)
o n - n 1  z 2I

-m

and
K

- j

Tz K K.. 2
Tr(S,(~i) = (w)) (4.40)

i i

Substitution of (4. 40) into 4. 39) and taking the trace operator inside

the integral gives

-Ol 2
S "S W) S,,(L)) d(4.41)

0 i n j1

CO i~lII



Equation (4.41) is one final result for the system performance

index 6 2. The index is expressed in terms of the input signal spectrum
0

S (w), which'may"nave a multipath representation, and the steered noisez

matrix. The latter contains the effects of array geometry, array steering,

and spatio-temporal correlation properties of the incident processes as

well as system interference. The elements Snlij (w) can be found from

2
equation (2.18). Using these results, one can calculate the index 6 for

Various values of -array steering and geometry, as well as different space-

time properties of both the signal and noise fields. Using 6 2 one can

then obtain the receiver-operating- characteristics (ROC) curves to

specify system performance in terms of error probabilities. Using these

curves, the designer can establish the effects upon system performance

of various parameters in the system, such as the effects of the number

of array elements, various array geometries, multipath structure, and

of the cross element space-time correlation properties which are related

to the array steering and incident process structure by equations (2. 13)

and (2. 18).

The previous chapter developed the optimum decision equations

for the array detection of random signals in, noise. Interpretation

yielded a number of system configurations (both stationary and time-

varying). The performance of these optimum systems was then investi-

gated for both the general case and the single signal (steered array)
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stationary process case. Introduction of the threshold assumption

allowed further simplification of the performance index and interpre-

tation to illustrate the effects of steering and cross link properties of

the random fields. The following section will investigate, as - case

stqdies, the performance of the optimum systems to determine the

effects of array geometry (element spacing and position), the effects of

multipath in the incident signal processes, and the effects of cross-

element correlation properties of the random fields. Analysis and

interpretation of the resulting performance curves (ROC) -Will establish

guidelines as to techniques for enhancing system performance, by valid

physical consideration.

Li

1 4



CHAPTER V

CASE STUDY

Using the results of Chapters II, IV, and the model of

Chapter II, the following chapter analyzes in detail the performance

of the previously derived system configurations for various cases.

The first case study will investigate the detection performance

of the single element optimum receiving system configuration. The

incident processes will be assumed gaussian, with the signal portion

of the received process consisting of a two path, correlated-multipath

random process with "Markovian" correlation function. The system

performance is evaluated in terms of the effects produced by the delay

between the multipaths, and the division of signal power between the

two resolvable paths, thus establishing the effects of the multipath

structure upon single receiving elemealt system performance.

The second case study will employ a two element receiving

array. In this study the effects of multipath structure upon system

performance will again be established. In addition, the effects of

element geometry and cross-link spatio- temporal correlation properties

of the incident random processes will be pinpointed. The physical

aspects. multipath effects, element geometry, and noise correlation

properties will then be combined, illustrating a method for enhancing

system performance by proper selection of array geometry.

55
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Finally, using the "best' geometry found in the second case

study, the effects of the number of array elements, upon performance,

wi]_t be illustrated.

Thus, these case studies establish the performance character-

istics of single and multiple element receiver systems. They illustrate

variations in system performance due to multipath structure in the

random signalsr-array geometry, array steering, and space-time

correlation properties of the incident random processes. In general,

the case s9udie& establish the role of spatio-ternporal correlation

properties of the incident processes, in terms of coupling by the array

receiving system, for the random, multipath signal and noise environ-

rnnt.

5-1. Homogeneous Interference Assumption

The steered noise spectral matrix was given by equation (3. 33).

If the noise spectrum at each receiving element is assumed to be the

same, the noise interference field is said to be a homogeneous field.

Such a space-time structure of the--noise field is frequently encountered

in both the sonar and radar cases, as well as in seismology. 1, '1, 14 The

homogeneity of the noise is represented mathematically by

S, (w) =S (w) all i,j
n n

In addition, it is assumed that there is some common factorable

noise spectral property in the elements of the noise spectral matrix. j
"I
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Thus, equation (3. 33) can be written as

Sn,(U. S ( w)8 (w) (5.1)
n

where the (w) matrix has elements

S~.(w)
.(W) = (SE(5.2)
-ij S (W)

n

Substitution of the above equations into the threshold detection performance

index, (3. 39), gives the new index

T (w) 1
0Z= Tr 1(- wIT) d
0 S n(,U) -P

(5.3)

go SSZ c2w)

: ( ))(ff , i j '(W)) dw

n i=lj=l

Defining

= _ (w) = signal-noise-ratio-function

s (w) on

and the array gain function
K K

cpi j (w) = G (w) = array gain function (5.4)0

j =1

one can write the performance index as

0 G dw (5. 5)

It is seen from equation (5. 5) that the performance is a function of the

input signal-to.-noise ratio and an array gain function which contains
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the enhancement due to the steering, frequency filtering, and combining

as well as the coupling produced by the array. It is the index in (5.5)

that is employed to analyze the following case studies.J

5-2. Case I - Single Element in Random Multipath Environment - Single

Plane Wave Coherently Undetectable Case

For the first case study, the receiver consists of a single

receiving element. The system deciilox equation (3.18) for detection

of the random stationary signal z(t) becomes

L = SR*wsQ(w)Rw (5.6)

with the filter SQ(w) given by

S (W) =z (W)s~wE (w)QZ

Sn(W) Cs %,W) + s (W)

The portion of S (w), S (w)/ S(wq is recognized as the'Wiener'estimation

filter.4,1

This system configuration is shown in the figure, 5-1, with the

signal spectrum S (w) being found below. The perfotmance of the systemz

is found from (5. 3), where the array gain equals 1 and S,(w) = Snw).

The performance index is

0 S (w) 2

o(5.7)

0 ~ ~~ Sz(U) 2T
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Assuming the random signal to have a two path structure with

A of the signal field in the first path and - in the second path with

delay between the paths, A. Mathematically the signal is represented

z(t) = zt) + zt)

where z1(t) = Az(t) and z 2 (t) is a delayed version of zl(t)

z2 (t) = Bz(t-A)

The correlation function of z(t) is

K (t, u) = E[z(t) z(u)]= A2 K (t, u) + ABK (t, u-A) + AB K (t-A, u)zz z z

+ B K (t-A, u-A)

and for stationary processes, t- u= T, thus

2 2
K (T) = (A + B) K (r) + AB [K (T+A) + K (T-A)] (5.9)

The power spectrum of z(t) is

S (W) =ZK(T) (A 2+B 2 ) S ( +ABS ( [ejWA+
z z z z

= (A+ B2 + 2AB cos wA) Sz(w)

Let the random signal correlation be Markovian with single

pole spectrum given by
2W P ! *

c zs (W) -(.ioz W2 f
c

#11
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where wc is the 3 dB bandwidth of the random signal process and Pz is

the average power. Thus S (w) in (5.6) and(5.7) is
z

ZLU P
[ S M (A2 + B 2ABco (.11)z 2 2

W -W
C

The system performance index is

2 2 2
2 ,.A + B +Z ABcoswA)2ZCPZ (

2 2
W +W

C

A plot of the effective signal-noise-ratio, 6 ISNR, versus the
0

normalized To of power in the second path is shown in figure 5-2 for

various values of multipath delay.

The plot shows that performance

1. degrades as the multipath delay, A, increases

2. degrades as a larger portion of the signal power is

transmitted via the second path.

The limiting curve of "worst performance" is the curve A-W,

while the "best performance" is for A= 0, implying no multipath structure.

The physical effect of the multipath structure is to distribute

the signal energy over a larger amount of time. This can be seen by

assuming that during the signal band, Tf- T = T, for no multipath, E,

a fixed amount of energy is transmitted. The signal energy per time
E

unit, available to the receiver is - and the iniput signal-to.-noise ratiop

Te
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with N representing the noise power is

pp
-SNR I  E~TN

If two paths exist with Ao of the energy transmitted via the first path

and B% transmitted via path two at time A, the total energy available is

still E, since A+ B = 1, but the time interval of total transmission is now

T + A. The input signal-to-noise ratio is lower, shown by

AE+BE E
SNR 1 = (T+A)N <TN

The effective SNR given by the performance index (5. 12) shows

quantitatively the above effects. In figure 5-2, the index decreases due

to increasing A, shown qualitatively above, and is "worst" for A .

Best performance is achieved when A is small; the signal energy con-

centration being greatest in the shorter transmission or observation

time period.

The degradation due to more equal distribution of energy over

the two paths with constant A is seen by examination of the SNR1 for a

single path. For A% of E transmitted in the first path during T, and B%

in the second, the SNR for each path is

~AE
SNR T1 TN

BE
SNR2 TN

A.-
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The receiver in effect must process two weaker signals in the

presence of constant noise power, rather than a single strong signal.

Thus, the effective SNR for each path is lower than for a single path,

and the resulting performance degrades. This effect is shown in the

figure by the decreasing performance index for increasing power ratio

-(or increasing energy in the second path). Thus, the performance for a

single element receiver is optimum when the multipath structure is

such that a majority of the available signal energy is transmitted in a

single path. If the power does split appreciably, the best performance

occurs for small delay A.

The performance for the single element receiver and given

environment cannot be improved without some influence upon the multi-

path structure of the information channel. As this is almost alwaysnot

the case, since the multipath structure is normally a natural phenomenon

of the channel and not under the designerts influence, the performance

of a single element is almost entirely fixed by the channel, with little

improvement capability available. Figure 5-3 shows ROC curves for

the single receiver element normalized SNR, and various multipath

structures, illustrating the performance variations noted above.

5-3. Case Ii - Two Element Array, No Multipath - Coherently

Undetectable Case

Turning now to the array detection case, the following case

study analyzes the performance of a two element array where the

[3
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random signal has no multipath structure. Inhij situation the steered

signal spectrum matrix (3. 3Z) is

Sz S (W) 1

The steered noise spectrum matrix is (3. 33)

S1 (w) = is]V I

The elements Sn:ij (w) are given by equation (2.8) and the waveform delay

is given by (7. 13). Thus

Sn (w) S lw) e-jWT

S,(w) = (5.13)

1 1  ejw) r Sn(w)

Application of the -homogeneous noise field assumption, and

assuming that the correlation properties of the unsteered noise matrIx

are such that

iiSn (wt) =Sc (W)  i =j

N°  (5. 14)
0 S

where S (w) is the common link power spectrum, the steered noisec

matrix is

N I AJWTAe "J T-

s,(w) =[S-2+(w) (5.15)

SAejWT I V

4
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Ii- where A is defined

A Sc() (5.16)

0
T + SclW)

The optimum system configuration in single combiner form is shown in

figure 5-4.

Putting equation (5.15) into the form of (5.1) gives the common

spectral occupancy Sn(w) and the (w) matrix.

N
0

S(w) =M + S(W) (5.17)

n *1
.A. Ae-J WT

AeJ(W) (5.18)
AeJ w T  1

Finding Tpl:(w)

I. I -Ae WT

1 -A e

CDl(w) = (5.19)
A-JWT

-Ae I J
1 - Az

and the array gain function (eq. 54) becomes

G (w)= 2(1-.AcoswT) (5. Z0)

1A

For mathematical simplicity, assume that the noise is entirely
N0

white, with S (W) =---; thus
c 2

A S i(u) N

2
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Substitution of these terms into the performance index equation

(5. 3) and taking

2 w P

czS M(w)

in Case Study I gives

Zw P'(w2 2 ) 2
62 = Zcco (5. 21)

0
-0

Integration of (5. 21) and plotting the error probabilities for

various values of T gives the ROC operating curves given in figure 5-5.

These curves show the variation of the system performance with changing

element separation, related by equation (2.13). The "best" performance

*is realized for infinite separation, while "worst" performance results

for T= 0, (no separation).

The improvement in performance, obtained by making T as

large as possible, can be interpreted in terms of the "detectability

resolution" of the entire space time receiving system. In antenna design

(spatial detection), it is often desirable to make the main lobe of the

beam pattern as narrow as possible while simultaneously reducing the

side lobes (minor lobes) of the antenna array pattern , 5 These

requirements are mutually exclusive, to a certain degree, since narrow-

ing the beam usually results in increased sidelobe level. The problem

is usually solved by employing an array of elements spaced and steered
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to give a narrow directional main beam. The power received by each

element is then weighted (shaded) to give a desired sidelobe level.Z, 4,5

; IThere are numerous shading schemes to obtain certain sidelobe charac-

teristics In these methods the physics (space-time) structare)

" j of the noise field is not takep into the problem analysis, thus the resulting

resolution (detection enhancement) is due to spatial resolution only. It

has been found, particularly in the area of radio astronomy , that "best"

resolution is achieved by widely spacing the elements of the array. As

the element spacing increases, 'Lhe resolution increases markedly.

Multi-element arrays with large element separation, such as in inter-

ferometers, are widely employed in much of present day radio astronomy

45
research.

In the case of optimum space-time detection, the analysis

includes the effects upon detection capability that arise from considera- j
tion of the space-time noise fields as well as the spatial array beam

pattern. Here also some of the same characteristics of the receiving

systems are wanted: narrow directional main lobe, low sidelobe level,

and effective noise field rejection. The latter requirement is added

because the array, together with the steering, combiner, and lattice

frequency filtering stages, produces effective noise rejection and signal

enhancement by adjustment of the sidelobe levels. The noise rejection

and signal enhancement result from the optimal system configuration



developed in Chapter M and discussed there. Thus the space-time

analysis yields the system detection performance in terms of both the

spatial resolution and the filtering (frequency) resolution of the incident

processes. The combined effects and resulting performance index can

be termed the total array "detectability resolution," combining the disci-

plines of antenna resolution theory and statistical communications and

optimal filtering theory.

The increased performance capability observed in figure 5-5

with increased separation of the elements is thus the result of sidelobe

1) noise rejection due to optimal lattice combining in the frequency filter-

ing stages; Z) narrowing the main lobe (yielding improved spatial

resolution) due to increased separation of the elements. The element

geometry (separati .on) and steering produce a spatial beam pattern with

a narrow directional main lobe; the optimum frequency filtering and

[i combining stages, dictated by the space-time structure of the incidenti-I
processes and the array geometry, perform sidelobe rejection and

shading, as well as statistically filtering the received data. Increasing

the separation produces a narrower, more directional spatial beamIt! I
pattern, thereby improving resolution in space, and, since the new

optimal frequency filtering and combining stages contain the new spatial

variables as parameters, these stages produce a new optimal noise

rejection and sidelobe level adjustment pattern, effectively yielding

fj
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an improved detection capability. The improvement in performance due

to element separation can be seen by plotting the beam pattern of the

above array receiving system. In figure 5-6 the beam pattern for a

two receiving element system is shown for the above interference field

and two values of element spacing. The solid curve represents a spacing

-fiXIZ, while the broken curve is the beam pattern for a spacing of 1. Ox.

As the spacing is increased from X/2 to 1. OX, the beam pattern changes

in two ways; the main lobe narrows and the side lobe level increses.

The frequency filtering and combining stages will compensate for the

increased sidelobe level by producing optimal noise rejection-signal

enhancement in frequency, while the narrow main beam will produce

improved signal resolution in space. The over-all result is improved

detection performance capability. The same results are seen in

figure 5-7. Here the beam pattern for the two element system is

plotted for two spacings and a signal incident at 30'. tThe increased spacing

gives a narrower main lobe and improved detectability resolution.

Therefore, consideration of the detection problem as a combined,

integrated, space-time problem, rather than dichotomizing the problem

into a spatial (antenna) problem and data processing problem, yields a

more concise, broader interpretation of design requirements. The

above case study shows that improved system performance is realized

for a two element array in a non-multipath environment by making the

separation of the receiving elements as large as is physically possible.

I
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The following case study will investigate the same array receiver in the

presence of a multipath signal structure.

5-4. Case III - Two Element Array Correlated Multipath Structure,

Coherently Undetectable Case

The preceding case study has shown the system configuration

and performance characteristics for a two element array operating in an

environment in which there was no multipath. The following case study

will investigate the system performance for the same system imbedded

in the same noise field environment, but with the random signal now

having the multipath structure that was assumed in Case I.

The system configuration is the same as that in figure 5-4, but

with S (w) now given by equation (5.11) of Case I.
I z

The system performance, a combination of input process SNR

given by (5.11) and array gain given by (5.10), is given by equations

i, (5.3) and (5.4) as.

W P (A?+ B + 2AB cos wA) dw
o. =  Z 2 - cos w

(5.22)

where the parameters w P , 'r and A were defined previously.c z

Integration of equation (5. 22) and numerical evaluation with T

fixed and various values of A, B, and A yield the curves of figure (5. 8).

In this plot, the normalized effective SNR (6 /SNR) is plotted versus

0
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the % of power in the second signal for a range of values for A. The

curves show that, for a given element spacing-delay factor T, the

system performance degrades as the multipath delay increases, and f
degrades as a greater percentage of the available signal power is trans-

mitted via the second (later) path. These results show the same trends

as for the single element system of Case I. The degradation is again

the result of loss of signal energy concentration, resulting in lowered

input SNR due to multipath spreading of the random signal. The multi-

path structure thus causes the same effects in the array detection case

as in the single element case.

ROC curves, corresponding to the curves for the index, are

plotted in figure 5-9 for fixed multipath power splitting (A=70%, B 30%)

and varying A and in 5-10 for fixed A and varying power splitting

(. 5 A ! 1. 0 , 0 : B <. .5) In both figures limiting "worst" and "best"

cases are plotted.

In the above analysis, the effects of changing multipath structure

were investigated for fixed element spacing. Since the multipath structure

is normally fixed by the physics of the channel, mechanism interacting

with the signal, basically uncontrollable, any improvement in system

performance due to design must come by variation of the array geometry,

steering, or frequency filtering / data processing.

The performance index of (5. Z) is plotted in figure 5-11 for

fixed multipath structure (A 1. 0) and various values of relative element
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spacings. These curves show the pronounced effect of element spacing

on performance. It can be seen from 5-9 that system performance is

enhanced considerably by increasing the separation of the elements.

The interpretation of the variation of performance with element spacing

is the same as for Case Study II, and illustrated in Figs. 5-6, 5-7. The

increased spacing produces a narrower directional spatial beam pattern

with better resolution and the effects of the new combining and frequency

filtering stages ierform optimal noise and sidelobe rejection, resulting

in improved performance. Thus array detectability resolution is

increased by separation of the array elements. The ROC curves for a

fixed multipath structure are plotted in figure 5-12, showing the effects

of array element separation upon system error probabilities. Thus,

varying element geometry in the form of separation gives one a method

of combating degradation due to multipath.

A comparison of the results of Case Study I and Case Study III

are shown in figures 5-13, 5-14, 5-15, 5-16. The figures show a com-

parison of the performance index of a single element system and a two

' element array for a range of multipath situations. It will be noted that

in each figure, regardless of A, the curve of the system index d for the

single element lies below the curve for the array index, corresponding to

an element spacing of T= 2. 0. For T< 2. 0, the single element perform-

ance index is superior to the array system. Since r was plotted relative

to the random signal bandwidth in the figures, it is related to w by

-
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m
WC

where m is a positive number dependent upon element spacing and

geometry. It follows from examination of the curves of figures 5-13,

5-14, 5-15, 5-16 that the array element spacing must be greater than

2. 0 times the reciprocal random signal process bandwidth in order for

a two element system to perform more optimally than a single element

system. For white noise increasing the spacing beyond 2. Owc produces

even greater improvement in performance, and the array system is

clearly preferable. If T< 2. 0, the single element receiving system

is preferable. Thus, the conclusion is drawn that the key in choosing

array geometry (element spacing) for a multipath signal environment is

that the element spacing be significantly larger than the reciprocal signal

process bandwidth. An improved array system detection performance

capability is realized by chossing an element spacing with respect to the

power spectrum bandwidth of the incident signal, not with respect to

the multipath structure in this case. The array geometry should be

chosen to give "best" performance possible (as widely spaced elements

as technically feasible) under the assumption that there is no multipath

structure in the random signal. If r>2. 0/Wci this insures that the array

will give, superior performance over the single element. If a multipath

structure does actually exist, the performance will degrade simultaneously

compatible amounts in both systems, as is shown by comparing figures

&
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5-13 through 5-16 If the multipath structure is fixed, the major method

available to the designer to improve a system's performance is to

increase the element spacing; once the maximum spacing (dictated

by practical size and space requirements) is reached, and if ->2, O/Wc,

performance is optimal. This dependence results from the separation

of array gain function (noise field and steering effects) and the signal-to-

noise-ratio (random signal field, multipath effects) in the performance

index. The use of multiple element detection systems with properjI
element spacing can be used to overcome degradation in a single element

system caused by the multipath. The above assumes that desired spacing

can be achieved such that the receiving elements are located in a manner

which renders cross-link noise correlation zero.

In general, the preceding case study has shown that

1. system performance degrades as the multipath delay

increases

2. system performance degrades as more signal energy

is transmitted via later paths

3. system performance improves as the element separation

is increased

4. two element system performance is optimal over a

single element system for array spacing greater than 2. 0

times the reciprocal bandwidth of the random signal in

any given multipath environment, assuming approximately
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a single arrival direction.

The -bove case study establishes the utility of array/diversity --

receiving systems and illustrates a method of evaluating attainable perform-

dnce capability over bingle receiving element systems.

5-5. Case IV - Multi-Element Array, Optimum Geometry, No Multipath

The above studies have shown th.at the "best" performance for a

multi-element array is realized for an array with widely spaced elements

imbedded in a channel with no multipath. In such cases, the performance

ii characteistics are optimum. ROC curves for a single element, a two

element, and a three element receiver in such an optimum environment

are shown in figure 5-17. In this plot, the performance of multi-element

detection systems is illustrated. Curves for systems N>3 lie above the

N= 3 curve and have superior performance characteristics. Thus

detection capability can be enhanced by properly employing optimized

multi-element arrays. In general, properly designed space-time multi-

element array detection systems offer more flexibility and superior

system performance characteristics than do systems employing a single

element.

5-6. Summary

The series of case studies has shown the effects upon system

performance (error probabilities and detectability) in terms of

1) multipath structure in the incident random signal(multipath delay and

I' .!
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multipath power division), 2) array geometry and steering (element

spacing), and 3) space-time .(spatio-temporal) correlation properties

of the incident random processes. In general, the following conclusions

can be established:

1. Pronounced multipath structure in the random

- itgnal degrades system performance due to spreading of the

signal energy over time-. Increasing delay and power split

degrade performance, with the delay factor being the major

factor in degrading performance.

2. Multi-element systems suffer comparable degra-

dation in performance resulting from multipath, as do single

element systems.

4 3. Multi-element systems offer better performance

characteristics than single element systems, if the spacing

of the array elenients is greater thanm times the reciprocal

bandwidth of theIntident randomi signal; .Where m is aconstant

dependent upon the number of elements, the signal and noise

fields, aihd the array geometry. For N= 2, an interferometer,

Sm Z .0.

4. The maximum performance gain possible for the cases

considered is realized for large element spacing.

5. The array system requirements and performance

characteristics are highly dependent upon the spatial structure

Vt



93

of the array and the space-time structure of the incident

signal and interference fields.

6. The array space-time analysis technique is an

extremely powerful tool for analysis, design, implementation,

and evaluation of modern detection systems.

Ii

It
A'_
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CHAPTER VI

CONCLUDING REMARKS AND FUTURE RESEARCH

It has been the purpose of- this research effort to obtain definitive

solutions to the problems associated with the analysis and design of optimal

space(arratliversity receiving systems. In particular, it is of consider-

able technological interest to establish the optimum system requirements

and system configurations, and to ascertain their related performance

characteristics for a wide range of physical information channel, cross-

section and noise field environments. The results and conclusions

obtained in this effort offer considerable design improvement capability

in the areas of sonar /radar /communications/ seismology, as well as

offering a unified, more concise formulation for many general reception/

detection/estimation problems.

This effort, along with other studies in spatio-temporal reception

I(Refs. 1, Z, 14, 20-24, 46) has shown that the dichotomy of the detection

problem into two separate areas (antenna and sensor design, and statis-

tical communication theory) can result in design and implementation of

receiver systems that are not truly optimum, in the sense of maximum

exploitation of the available information and physics of the environment.

Space-time considerations attempt to combine the spatial properties and

the temporal properties of the incident processes physics, the array,

its geometry, and the associated data processor in order to obtain

94
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systems that are optimum in both their space and their time data process-

ing characteristics. It has been shown that such systems, when properly

designed, offer performance improvement over sub-optimum systems ]
implemented with limited "classically optimal" procedures. This

improved performance is not obtained without cost, however, since the

analysis and design of space-time systems is considerably more difficult

than conventional method, Thus,performance enhancement is possible by

the use of spatio-temporal techniques, enhancement that is paid for by

larger, more complex, yet quite physically tractable. systems.

Finally, the effort has shown that in the final analysis, in design

and implementation of receiving systems, the engineer must deal with

the real, basic physics of wave mechanics and receiving element-wave

front interaction. The mathematical elegance, abstractness, and com-

plexity that arises in the analysis, is only of value if it reflects and

models the actual physical mechanisms that exist in the physical environ-

ment of the systems. The goal in engineering, and in particular, in

space-time reception, is to express the system requirements and resulting

performance in terms of the fundamental variables of physics (space, 11
time and energy). Solutions not in these terms, or not capable of being

reduced to them, are of little practical engineering value. It has been

the purpose of this research to express the results in terms of these

variable s.

'I
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This research effort has quantitatively established the optimum

system requirements and configurations, and quantitatively established

the effects upon system performance of

1. multipath structure in the random signal, both

variations in the path delay and power division between thev arious paths.

Z. the effects of array element separation (array

geometry) relative to the strudtuhe ofthe incident processes

3. the effects of certain spatio-temporal correlation

properties of the incident processes.

In particular, it was found that

1. increasing multipath delay degrades per:formance, as

dces spreading of the available signal power over a number of

transmission paths

2. in array detection, the key relationship is the signal,

bandwidth to element spacing. If the spacing is such that it is

approximately 2. 0 times the reciprocal bandwidth of the random

signal, the array will perform in a superior manner when com-

pared to a single element system. Decreasing the spacing below

this value yields the. single receiving element systemn preferable.

3. the optimum system configuration in a two element

array is such that the elements are as widely separated as

possible.

f
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Finally, some criticism of the preceding analysis is necessary;

these criticisms give rise to future necessary studies and further I
research efforts.

The most obvious need is for the analysis to be extended to multiple

element (N> 2) arrays. The analysis methods presented here are valid

for these larger arrays. This study (N=2) gives insight into the effects

and shows the general trends of the effects of element spacing and multi-

path upon system performance. Analysis for (N> 2) will give more

definitive answers as to the effect of element spacing and geometry in

multi-element systems.

Additional study is needed for space-time random fields other

than those considered in the case studies. In particular, the effects of

the magnitude of cross link correlation of the noise and signal fields

need to be established. The analysis presented above considered only

white noise and Markovian signals; other distributed noise field spectra

should be investigated.

The multipath arrival angle in the cases was assutned essentialy the

same for all paths. In practice, the angles are usually different; this

46
analysis needs to be investigated further. A recent effort by Schweppe

has initiated a study of this area.

18The signals were considert:, purely random. Middleton has

shown that a strong specular component is present quite often in the cases

of random fading, scattering, and reverberation of deterministic
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signals. This result should be incorporated into the system design

equations.

Finally, the analysis was carried out by assuming that the coup-

ling was memoryless. The analysis should include the specific effects

of -the interaction of the receiving elements and the space-time wave

equations. Such multivariable analysis 4 ' 18 would strengthen the argu-

ments for consideration of the unified space-time reception problem.

In effect, this research is only the beginning of a much broader,

more general research effort that has been critically needed in studying

the reception problem. There is a definite need to reorganize and unify

the disciplines of statistical communication theory and antenna array

design theory in order to achieve a unified approach to the solution of

the reception problem. This research effort has investigated a small

area of the total problem. It has shown that space-time analysis is

definitely valuable in system design and has given definitive, quantitative

answers to the case study problems of optimum array detection of noisy

Irandom multipath signals. It has established the effects of multipath

i (delay and power division), of element geometry (spacing) and of spatio-

temporal correlation properties of the incident random fields on performance.

The over-all result of this research effort is the establishing of

general synthesis guidelines that enable one to attain, design, implement

analyzeand enhance performance of optimum space-time detection/

estimation/classification/ and discrimination systems.
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